OpenAI APIs - Embedding#
SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models. A complete reference for the API is available in the OpenAI API Reference.
This tutorial covers the embedding APIs for embedding models. For a list of the supported models see the corresponding overview page
Launch A Server#
Launch the server in your terminal and wait for it to initialize. Remember to add --is-embedding to the command.
[ ]:
from sglang.test.doc_patch import launch_server_cmd
from sglang.utils import wait_for_server, print_highlight, terminate_process
embedding_process, port = launch_server_cmd(
"""
python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \
--host 0.0.0.0 --is-embedding --log-level warning
"""
)
wait_for_server(f"http://localhost:{port}")
Using cURL#
[ ]:
import subprocess, json
text = "Once upon a time"
curl_text = f"""curl -s http://localhost:{port}/v1/embeddings \
-H "Content-Type: application/json" \
-d '{{"model": "Alibaba-NLP/gte-Qwen2-1.5B-instruct", "input": "{text}"}}'"""
result = subprocess.check_output(curl_text, shell=True)
print(result)
text_embedding = json.loads(result)["data"][0]["embedding"]
print_highlight(f"Text embedding (first 10): {text_embedding[:10]}")
Using Python Requests#
[ ]:
import requests
text = "Once upon a time"
response = requests.post(
f"http://localhost:{port}/v1/embeddings",
json={"model": "Alibaba-NLP/gte-Qwen2-1.5B-instruct", "input": text},
)
text_embedding = response.json()["data"][0]["embedding"]
print_highlight(f"Text embedding (first 10): {text_embedding[:10]}")
Using OpenAI Python Client#
[ ]:
import openai
client = openai.Client(base_url=f"http://127.0.0.1:{port}/v1", api_key="None")
# Text embedding example
response = client.embeddings.create(
model="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
input=text,
)
embedding = response.data[0].embedding[:10]
print_highlight(f"Text embedding (first 10): {embedding}")
Using Input IDs#
SGLang also supports input_ids as input to get the embedding.
[ ]:
import json
import os
from transformers import AutoTokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-Qwen2-1.5B-instruct")
input_ids = tokenizer.encode(text)
curl_ids = f"""curl -s http://localhost:{port}/v1/embeddings \
-H "Content-Type: application/json" \
-d '{{"model": "Alibaba-NLP/gte-Qwen2-1.5B-instruct", "input": {json.dumps(input_ids)}}}'"""
input_ids_embedding = json.loads(subprocess.check_output(curl_ids, shell=True))["data"][
0
]["embedding"]
print_highlight(f"Input IDs embedding (first 10): {input_ids_embedding[:10]}")
[ ]:
terminate_process(embedding_process)
Multi-Modal Embedding Model#
Please refer to Multi-Modal Embedding Model