Offline Engine API#
SGLang provides a direct inference engine without the need for an HTTP server, especially for use cases where additional HTTP server adds unnecessary complexity or overhead. Here are two general use cases:
Offline Batch Inference
Custom Server on Top of the Engine
This document focuses on the offline batch inference, demonstrating four different inference modes:
Non-streaming synchronous generation
Streaming synchronous generation
Non-streaming asynchronous generation
Streaming asynchronous generation
Additionally, you can easily build a custom server on top of the SGLang offline engine. A detailed example working in a python script can be found in custom_server.
Nest Asyncio#
Note that if you want to use Offline Engine in ipython or some other nested loop code, you need to add the following code:
import nest_asyncio
nest_asyncio.apply()
Advanced Usage#
The engine supports vlm inference as well as extracting hidden states.
Please see the examples for further use cases.
Offline Batch Inference#
SGLang offline engine supports batch inference with efficient scheduling.
[ ]:
# launch the offline engine
import asyncio
import sglang as sgl
import sglang.test.doc_patch
from sglang.utils import async_stream_and_merge, stream_and_merge
llm = sgl.Engine(model_path="qwen/qwen2.5-0.5b-instruct")
Non-streaming Synchronous Generation#
[ ]:
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = {"temperature": 0.8, "top_p": 0.95}
outputs = llm.generate(prompts, sampling_params)
for prompt, output in zip(prompts, outputs):
print("===============================")
print(f"Prompt: {prompt}\nGenerated text: {output['text']}")
Streaming Synchronous Generation#
[ ]:
prompts = [
"Write a short, neutral self-introduction for a fictional character. Hello, my name is",
"Provide a concise factual statement about France’s capital city. The capital of France is",
"Explain possible future trends in artificial intelligence. The future of AI is",
]
sampling_params = {
"temperature": 0.2,
"top_p": 0.9,
}
print("\n=== Testing synchronous streaming generation with overlap removal ===\n")
for prompt in prompts:
print(f"Prompt: {prompt}")
merged_output = stream_and_merge(llm, prompt, sampling_params)
print("Generated text:", merged_output)
print()
Non-streaming Asynchronous Generation#
[ ]:
prompts = [
"Write a short, neutral self-introduction for a fictional character. Hello, my name is",
"Provide a concise factual statement about France’s capital city. The capital of France is",
"Explain possible future trends in artificial intelligence. The future of AI is",
]
sampling_params = {"temperature": 0.8, "top_p": 0.95}
print("\n=== Testing asynchronous batch generation ===")
async def main():
outputs = await llm.async_generate(prompts, sampling_params)
for prompt, output in zip(prompts, outputs):
print(f"\nPrompt: {prompt}")
print(f"Generated text: {output['text']}")
asyncio.run(main())
Streaming Asynchronous Generation#
[ ]:
prompts = [
"Write a short, neutral self-introduction for a fictional character. Hello, my name is",
"Provide a concise factual statement about France’s capital city. The capital of France is",
"Explain possible future trends in artificial intelligence. The future of AI is",
]
sampling_params = {"temperature": 0.8, "top_p": 0.95}
print("\n=== Testing asynchronous streaming generation (no repeats) ===")
async def main():
for prompt in prompts:
print(f"\nPrompt: {prompt}")
print("Generated text: ", end="", flush=True)
# Replace direct calls to async_generate with our custom overlap-aware version
async for cleaned_chunk in async_stream_and_merge(llm, prompt, sampling_params):
print(cleaned_chunk, end="", flush=True)
print() # New line after each prompt
asyncio.run(main())
[ ]:
llm.shutdown()