SGLang Native APIs#

Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce the following APIs:

  • /generate (text generation model)

  • /get_model_info

  • /get_server_info

  • /health

  • /health_generate

  • /flush_cache

  • /update_weights

  • /encode(embedding model)

  • /v1/rerank(cross encoder rerank model)

  • /classify(reward model)

  • /start_expert_distribution_record

  • /stop_expert_distribution_record

  • /dump_expert_distribution_record

  • /tokenize

  • /detokenize

  • A full list of these APIs can be found at http_server.py

We mainly use requests to test these APIs in the following examples. You can also use curl.

Launch A Server#

[ ]:
from sglang.test.doc_patch import launch_server_cmd
from sglang.utils import wait_for_server, print_highlight, terminate_process

server_process, port = launch_server_cmd(
    "python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0 --log-level warning"
)

wait_for_server(f"http://localhost:{port}")

Generate (text generation model)#

Generate completions. This is similar to the /v1/completions in OpenAI API. Detailed parameters can be found in the sampling parameters.

[ ]:
import requests

url = f"http://localhost:{port}/generate"
data = {"text": "What is the capital of France?"}

response = requests.post(url, json=data)
print_highlight(response.json())

Get Model Info#

Get the information of the model.

  • model_path: The path/name of the model.

  • is_generation: Whether the model is used as generation model or embedding model.

  • tokenizer_path: The path/name of the tokenizer.

  • preferred_sampling_params: The default sampling params specified via --preferred-sampling-params. None is returned in this example as we did not explicitly configure it in server args.

  • weight_version: This field contains the version of the model weights. This is often used to track changes or updates to the model’s trained parameters.

[ ]:
url = f"http://localhost:{port}/get_model_info"

response = requests.get(url)
response_json = response.json()
print_highlight(response_json)
assert response_json["model_path"] == "qwen/qwen2.5-0.5b-instruct"
assert response_json["is_generation"] is True
assert response_json["tokenizer_path"] == "qwen/qwen2.5-0.5b-instruct"
assert response_json["preferred_sampling_params"] is None
assert response_json.keys() == {
    "model_path",
    "is_generation",
    "tokenizer_path",
    "preferred_sampling_params",
    "weight_version",
}

Get Server Info#

Gets the server information including CLI arguments, token limits, and memory pool sizes.

  • Note: get_server_info merges the following deprecated endpoints:

    • get_server_args

    • get_memory_pool_size

    • get_max_total_num_tokens

[ ]:
url = f"http://localhost:{port}/get_server_info"

response = requests.get(url)
print_highlight(response.text)

Health Check#

  • /health: Check the health of the server.

  • /health_generate: Check the health of the server by generating one token.

[ ]:
url = f"http://localhost:{port}/health_generate"

response = requests.get(url)
print_highlight(response.text)
[ ]:
url = f"http://localhost:{port}/health"

response = requests.get(url)
print_highlight(response.text)

Flush Cache#

Flush the radix cache. It will be automatically triggered when the model weights are updated by the /update_weights API.

[ ]:
url = f"http://localhost:{port}/flush_cache"

response = requests.post(url)
print_highlight(response.text)

Update Weights From Disk#

Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.

SGLang support update_weights_from_disk API for continuous evaluation during training (save checkpoint to disk and update weights from disk).

[ ]:
# successful update with same architecture and size

url = f"http://localhost:{port}/update_weights_from_disk"
data = {"model_path": "qwen/qwen2.5-0.5b-instruct"}

response = requests.post(url, json=data)
print_highlight(response.text)
assert response.json()["success"] is True
assert response.json()["message"] == "Succeeded to update model weights."
[ ]:
# failed update with different parameter size or wrong name

url = f"http://localhost:{port}/update_weights_from_disk"
data = {"model_path": "qwen/qwen2.5-0.5b-instruct-wrong"}

response = requests.post(url, json=data)
response_json = response.json()
print_highlight(response_json)
assert response_json["success"] is False
assert response_json["message"] == (
    "Failed to get weights iterator: "
    "qwen/qwen2.5-0.5b-instruct-wrong"
    " (repository not found)."
)
[ ]:
terminate_process(server_process)

Encode (embedding model)#

Encode text into embeddings. Note that this API is only available for embedding models and will raise an error for generation models. Therefore, we launch a new server to server an embedding model.

[ ]:
embedding_process, port = launch_server_cmd(
    """
python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \
    --host 0.0.0.0 --is-embedding --log-level warning
"""
)

wait_for_server(f"http://localhost:{port}")
[ ]:
# successful encode for embedding model

url = f"http://localhost:{port}/encode"
data = {"model": "Alibaba-NLP/gte-Qwen2-1.5B-instruct", "text": "Once upon a time"}

response = requests.post(url, json=data)
response_json = response.json()
print_highlight(f"Text embedding (first 10): {response_json['embedding'][:10]}")
[ ]:
terminate_process(embedding_process)

v1/rerank (cross encoder rerank model)#

Rerank a list of documents given a query using a cross-encoder model. Note that this API is only available for cross encoder model like BAAI/bge-reranker-v2-m3 with attention-backend triton and torch_native.

[ ]:
reranker_process, port = launch_server_cmd(
    """
python3 -m sglang.launch_server --model-path BAAI/bge-reranker-v2-m3 \
    --host 0.0.0.0 --disable-radix-cache --chunked-prefill-size -1 --attention-backend triton --is-embedding --log-level warning
"""
)

wait_for_server(f"http://localhost:{port}")
[ ]:
# compute rerank scores for query and documents

url = f"http://localhost:{port}/v1/rerank"
data = {
    "model": "BAAI/bge-reranker-v2-m3",
    "query": "what is panda?",
    "documents": [
        "hi",
        "The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.",
    ],
}

response = requests.post(url, json=data)
response_json = response.json()
for item in response_json:
    print_highlight(f"Score: {item['score']:.2f} - Document: '{item['document']}'")
[ ]:
terminate_process(reranker_process)

Classify (reward model)#

SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations.

[ ]:
# Note that SGLang now treats embedding models and reward models as the same type of models.
# This will be updated in the future.

reward_process, port = launch_server_cmd(
    """
python3 -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding --log-level warning
"""
)

wait_for_server(f"http://localhost:{port}")
[ ]:
from transformers import AutoTokenizer

PROMPT = (
    "What is the range of the numeric output of a sigmoid node in a neural network?"
)

RESPONSE1 = "The output of a sigmoid node is bounded between -1 and 1."
RESPONSE2 = "The output of a sigmoid node is bounded between 0 and 1."

CONVS = [
    [{"role": "user", "content": PROMPT}, {"role": "assistant", "content": RESPONSE1}],
    [{"role": "user", "content": PROMPT}, {"role": "assistant", "content": RESPONSE2}],
]

tokenizer = AutoTokenizer.from_pretrained("Skywork/Skywork-Reward-Llama-3.1-8B-v0.2")
prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)

url = f"http://localhost:{port}/classify"
data = {"model": "Skywork/Skywork-Reward-Llama-3.1-8B-v0.2", "text": prompts}

responses = requests.post(url, json=data).json()
for response in responses:
    print_highlight(f"reward: {response['embedding'][0]}")
[ ]:
terminate_process(reward_process)

Capture expert selection distribution in MoE models#

SGLang Runtime supports recording the number of times an expert is selected in a MoE model run for each expert in the model. This is useful when analyzing the throughput of the model and plan for optimization.

Note: We only print out the first 10 lines of the csv below for better readability. Please adjust accordingly if you want to analyze the results more deeply.

[ ]:
expert_record_server_process, port = launch_server_cmd(
    "python3 -m sglang.launch_server --model-path Qwen/Qwen1.5-MoE-A2.7B --host 0.0.0.0 --expert-distribution-recorder-mode stat --log-level warning"
)

wait_for_server(f"http://localhost:{port}")
[ ]:
response = requests.post(f"http://localhost:{port}/start_expert_distribution_record")
print_highlight(response)

url = f"http://localhost:{port}/generate"
data = {"text": "What is the capital of France?"}

response = requests.post(url, json=data)
print_highlight(response.json())

response = requests.post(f"http://localhost:{port}/stop_expert_distribution_record")
print_highlight(response)

response = requests.post(f"http://localhost:{port}/dump_expert_distribution_record")
print_highlight(response)
[ ]:
terminate_process(expert_record_server_process)

Tokenize/Detokenize Example (Round Trip)#

This example demonstrates how to use the /tokenize and /detokenize endpoints together. We first tokenize a string, then detokenize the resulting IDs to reconstruct the original text. This workflow is useful when you need to handle tokenization externally but still leverage the server for detokenization.

[ ]:
tokenizer_free_server_process, port = launch_server_cmd(
    """
python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct
"""
)

wait_for_server(f"http://localhost:{port}")
[ ]:
import requests
from sglang.utils import print_highlight

base_url = f"http://localhost:{port}"
tokenize_url = f"{base_url}/tokenize"
detokenize_url = f"{base_url}/detokenize"

model_name = "qwen/qwen2.5-0.5b-instruct"
input_text = "SGLang provides efficient tokenization endpoints."
print_highlight(f"Original Input Text:\n'{input_text}'")

# --- tokenize the input text ---
tokenize_payload = {
    "model": model_name,
    "prompt": input_text,
    "add_special_tokens": False,
}
try:
    tokenize_response = requests.post(tokenize_url, json=tokenize_payload)
    tokenize_response.raise_for_status()
    tokenization_result = tokenize_response.json()
    token_ids = tokenization_result.get("tokens")

    if not token_ids:
        raise ValueError("Tokenization returned empty tokens.")

    print_highlight(f"\nTokenized Output (IDs):\n{token_ids}")
    print_highlight(f"Token Count: {tokenization_result.get('count')}")
    print_highlight(f"Max Model Length: {tokenization_result.get('max_model_len')}")

    # --- detokenize the obtained token IDs ---
    detokenize_payload = {
        "model": model_name,
        "tokens": token_ids,
        "skip_special_tokens": True,
    }

    detokenize_response = requests.post(detokenize_url, json=detokenize_payload)
    detokenize_response.raise_for_status()
    detokenization_result = detokenize_response.json()
    reconstructed_text = detokenization_result.get("text")

    print_highlight(f"\nDetokenized Output (Text):\n'{reconstructed_text}'")

    if input_text == reconstructed_text:
        print_highlight(
            "\nRound Trip Successful: Original and reconstructed text match."
        )
    else:
        print_highlight(
            "\nRound Trip Mismatch: Original and reconstructed text differ."
        )

except requests.exceptions.RequestException as e:
    print_highlight(f"\nHTTP Request Error: {e}")
except Exception as e:
    print_highlight(f"\nAn error occurred: {e}")
[ ]:
terminate_process(tokenizer_free_server_process)