Embedding Models#
SGLang provides robust support for embedding models by integrating efficient serving mechanisms with its flexible programming interface. This integration allows for streamlined handling of embedding tasks, facilitating faster and more accurate retrieval and semantic search operations. SGLang’s architecture enables better resource utilization and reduced latency in embedding model deployment.
Important
Embedding models are executed with --is-embedding flag and some may require --trust-remote-code
Quick Start#
Launch Server#
python3 -m sglang.launch_server \
--model-path Qwen/Qwen3-Embedding-4B \
--is-embedding \
--host 0.0.0.0 \
--port 30000
Client Request#
import requests
url = "http://127.0.0.1:30000"
payload = {
"model": "Qwen/Qwen3-Embedding-4B",
"input": "What is the capital of France?",
"encoding_format": "float"
}
response = requests.post(url + "/v1/embeddings", json=payload).json()
print("Embedding:", response["data"][0]["embedding"])
Multimodal Embedding Example#
For multimodal models like GME that support both text and images:
python3 -m sglang.launch_server \
--model-path Alibaba-NLP/gme-Qwen2-VL-2B-Instruct \
--is-embedding \
--chat-template gme-qwen2-vl \
--host 0.0.0.0 \
--port 30000
import requests
url = "http://127.0.0.1:30000"
text_input = "Represent this image in embedding space."
image_path = "https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild/resolve/main/images/023.jpg"
payload = {
"model": "gme-qwen2-vl",
"input": [
{
"text": text_input
},
{
"image": image_path
}
],
}
response = requests.post(url + "/v1/embeddings", json=payload).json()
print("Embeddings:", [x.get("embedding") for x in response.get("data", [])])
Matryoshka Embedding Example#
Matryoshka Embeddings or Matryoshka Representation Learning (MRL) is a technique used in training embedding models. It allows user to trade off between performance and cost.
1. Launch a Matryoshka‑capable model#
If the model config already includes matryoshka_dimensions or is_matryoshka then no override is needed. Otherwise, you can use --json-model-override-args as below:
python3 -m sglang.launch_server \
--model-path Qwen/Qwen3-Embedding-0.6B \
--is-embedding \
--host 0.0.0.0 \
--port 30000 \
--json-model-override-args '{"matryoshka_dimensions": [128, 256, 512, 1024, 1536]}'
Setting
"is_matryoshka": trueallows truncating to any dimension. Otherwise, the server will validate that the specified dimension in the request is one ofmatryoshka_dimensions.Omitting
dimensionsin a request returns the full vector.
2. Make requests with different output dimensions#
import requests
url = "http://127.0.0.1:30000"
# Request a truncated (Matryoshka) embedding by specifying a supported dimension.
payload = {
"model": "Qwen/Qwen3-Embedding-0.6B",
"input": "Explain diffusion models simply.",
"dimensions": 512 # change to 128 / 1024 / omit for full size
}
response = requests.post(url + "/v1/embeddings", json=payload).json()
print("Embedding:", response["data"][0]["embedding"])
Supported Models#
Model Family |
Example Model |
Chat Template |
Description |
|---|---|---|---|
E5 (Llama/Mistral based) |
|
N/A |
High-quality text embeddings based on Mistral/Llama architectures |
GTE-Qwen2 |
|
N/A |
Alibaba’s text embedding model with multilingual support |
Qwen3-Embedding |
|
N/A |
Latest Qwen3-based text embedding model for semantic representation |
BGE |
|
N/A |
BAAI’s text embeddings (requires |
GME (Multimodal) |
|
|
Multimodal embedding for text and image cross-modal tasks |
CLIP |
|
N/A |
OpenAI’s CLIP for image and text embeddings |