Query Vision Language Model#

Querying Qwen-VL#

[ ]:
import nest_asyncio

nest_asyncio.apply()  # Run this first.

model_path = "Qwen/Qwen2.5-VL-3B-Instruct"
chat_template = "qwen2-vl"
[ ]:
# Lets create a prompt.

from io import BytesIO
import requests
from PIL import Image

from sglang.srt.parser.conversation import chat_templates

image = Image.open(
    BytesIO(
        requests.get(
            "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
        ).content
    )
)

conv = chat_templates[chat_template].copy()
conv.append_message(conv.roles[0], f"What's shown here: {conv.image_token}?")
conv.append_message(conv.roles[1], "")
conv.image_data = [image]

print(conv.get_prompt())
image

Query via the offline Engine API#

[ ]:
from sglang import Engine

llm = Engine(
    model_path=model_path, chat_template=chat_template, mem_fraction_static=0.8
)
[ ]:
out = llm.generate(prompt=conv.get_prompt(), image_data=[image])
print(out["text"])

Query via the offline Engine API, but send precomputed embeddings#

[ ]:
# Compute the image embeddings using Huggingface.

from transformers import AutoProcessor
from transformers import Qwen2_5_VLForConditionalGeneration

processor = AutoProcessor.from_pretrained(model_path, use_fast=True)
vision = (
    Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path).eval().visual.cuda()
)
[ ]:
processed_prompt = processor(
    images=[image], text=conv.get_prompt(), return_tensors="pt"
)
input_ids = processed_prompt["input_ids"][0].detach().cpu().tolist()
precomputed_embeddings = vision(
    processed_prompt["pixel_values"].cuda(), processed_prompt["image_grid_thw"].cuda()
)

mm_item = dict(
    modality="IMAGE",
    image_grid_thw=processed_prompt["image_grid_thw"],
    precomputed_embeddings=precomputed_embeddings,
)
out = llm.generate(input_ids=input_ids, image_data=[mm_item])
print(out["text"])

Querying Llama 4 (Vision)#

[ ]:
import nest_asyncio

nest_asyncio.apply()  # Run this first.

model_path = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
chat_template = "llama-4"
[ ]:
# Lets create a prompt.

from io import BytesIO
import requests
from PIL import Image

from sglang.srt.parser.conversation import chat_templates

image = Image.open(
    BytesIO(
        requests.get(
            "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
        ).content
    )
)

conv = chat_templates[chat_template].copy()
conv.append_message(conv.roles[0], f"What's shown here: {conv.image_token}?")
conv.append_message(conv.roles[1], "")
conv.image_data = [image]

print(conv.get_prompt())
print(f"Image size: {image.size}")

image

Query via the offline Engine API#

[ ]:
from sglang.test.test_utils import is_in_ci

if not is_in_ci():
    from sglang import Engine

    llm = Engine(
        model_path=model_path,
        trust_remote_code=True,
        enable_multimodal=True,
        mem_fraction_static=0.8,
        tp_size=4,
        attention_backend="fa3",
        context_length=65536,
    )
[ ]:
if not is_in_ci():
    out = llm.generate(prompt=conv.get_prompt(), image_data=[image])
    print(out["text"])

Query via the offline Engine API, but send precomputed embeddings#

[ ]:
if not is_in_ci():
    # Compute the image embeddings using Huggingface.

    from transformers import AutoProcessor
    from transformers import Llama4ForConditionalGeneration

    processor = AutoProcessor.from_pretrained(model_path, use_fast=True)
    model = Llama4ForConditionalGeneration.from_pretrained(
        model_path, torch_dtype="auto"
    ).eval()
    vision = model.vision_model.cuda()
    multi_modal_projector = model.multi_modal_projector.cuda()
[ ]:
if not is_in_ci():
    processed_prompt = processor(
        images=[image], text=conv.get_prompt(), return_tensors="pt"
    )
    print(f'{processed_prompt["pixel_values"].shape=}')
    input_ids = processed_prompt["input_ids"][0].detach().cpu().tolist()

    image_outputs = vision(
        processed_prompt["pixel_values"].to("cuda"), output_hidden_states=False
    )
    image_features = image_outputs.last_hidden_state
    vision_flat = image_features.view(-1, image_features.size(-1))
    precomputed_embeddings = multi_modal_projector(vision_flat)

    mm_item = dict(modality="IMAGE", precomputed_embeddings=precomputed_embeddings)
    out = llm.generate(input_ids=input_ids, image_data=[mm_item])
    print(out["text"])