17.4. signal
— Set handlers for asynchronous events¶
This module provides mechanisms to use signal handlers in Python.
17.4.1. General rules¶
The signal.signal()
function allows to define custom handlers to be
executed when a signal is received. A small number of default handlers are
installed: SIGPIPE
is ignored (so write errors on pipes and sockets
can be reported as ordinary Python exceptions) and SIGINT
is
translated into a KeyboardInterrupt
exception.
A handler for a particular signal, once set, remains installed until it is
explicitly reset (Python emulates the BSD style interface regardless of the
underlying implementation), with the exception of the handler for
SIGCHLD
, which follows the underlying implementation.
There is no way to 「block」 signals temporarily from critical sections (since this is not supported by all Unix flavors).
17.4.1.1. Execution of Python signal handlers¶
A Python signal handler does not get executed inside the low-level (C) signal handler. Instead, the low-level signal handler sets a flag which tells the virtual machine to execute the corresponding Python signal handler at a later point(for example at the next bytecode instruction). This has consequences:
- It makes little sense to catch synchronous errors like
SIGFPE
orSIGSEGV
. - A long-running calculation implemented purely in C (such as regular expression matching on a large body of text) may run uninterrupted for an arbitrary amount of time, regardless of any signals received. The Python signal handlers will be called when the calculation finishes.
17.4.1.2. Signals and threads¶
Python signal handlers are always executed in the main Python thread,
even if the signal was received in another thread. This means that signals
can’t be used as a means of inter-thread communication. You can use
the synchronization primitives from the threading
module instead.
Besides, only the main thread is allowed to set a new signal handler.
17.4.2. Module contents¶
The variables defined in the signal
module are:
-
signal.
SIG_DFL
¶ This is one of two standard signal handling options; it will simply perform the default function for the signal. For example, on most systems the default action for
SIGQUIT
is to dump core and exit, while the default action forSIGCHLD
is to simply ignore it.
-
signal.
SIG_IGN
¶ This is another standard signal handler, which will simply ignore the given signal.
-
SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal.SIGHUP
; the variable names are identical to the names used in C programs, as found in<signal.h>
. The Unix man page for 『signal()
』 lists the existing signals (on some systems this is signal(2), on others the list is in signal(7)). Note that not all systems define the same set of signal names; only those names defined by the system are defined by this module.
-
signal.
CTRL_C_EVENT
¶ The signal corresponding to the CTRL+C keystroke event. This signal can only be used with
os.kill()
.Availability: Windows.
3.2 版新加入.
-
signal.
CTRL_BREAK_EVENT
¶ The signal corresponding to the CTRL+BREAK keystroke event. This signal can only be used with
os.kill()
.Availability: Windows.
3.2 版新加入.
-
signal.
NSIG
¶ One more than the number of the highest signal number.
-
signal.
ITIMER_REAL
¶ Decrements interval timer in real time, and delivers
SIGALRM
upon expiration.
-
signal.
ITIMER_VIRTUAL
¶ Decrements interval timer only when the process is executing, and delivers SIGVTALRM upon expiration.
-
signal.
ITIMER_PROF
¶ Decrements interval timer both when the process executes and when the system is executing on behalf of the process. Coupled with ITIMER_VIRTUAL, this timer is usually used to profile the time spent by the application in user and kernel space. SIGPROF is delivered upon expiration.
The signal
module defines one exception:
-
exception
signal.
ItimerError
¶ Raised to signal an error from the underlying
setitimer()
orgetitimer()
implementation. Expect this error if an invalid interval timer or a negative time is passed tosetitimer()
. This error is a subtype ofIOError
.
The signal
module defines the following functions:
-
signal.
alarm
(time)¶ If time is non-zero, this function requests that a
SIGALRM
signal be sent to the process in time seconds. Any previously scheduled alarm is canceled (only one alarm can be scheduled at any time). The returned value is then the number of seconds before any previously set alarm was to have been delivered. If time is zero, no alarm is scheduled, and any scheduled alarm is canceled. If the return value is zero, no alarm is currently scheduled. (See the Unix man page alarm(2).) Availability: Unix.
-
signal.
getsignal
(signalnum)¶ Return the current signal handler for the signal signalnum. The returned value may be a callable Python object, or one of the special values
signal.SIG_IGN
,signal.SIG_DFL
orNone
. Here,signal.SIG_IGN
means that the signal was previously ignored,signal.SIG_DFL
means that the default way of handling the signal was previously in use, andNone
means that the previous signal handler was not installed from Python.
-
signal.
pause
()¶ Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing. Not on Windows. (See the Unix man page signal(2).)
-
signal.
setitimer
(which, seconds[, interval])¶ Sets given interval timer (one of
signal.ITIMER_REAL
,signal.ITIMER_VIRTUAL
orsignal.ITIMER_PROF
) specified by which to fire after seconds (float is accepted, different fromalarm()
) and after that every interval seconds. The interval timer specified by which can be cleared by setting seconds to zero.When an interval timer fires, a signal is sent to the process. The signal sent is dependent on the timer being used;
signal.ITIMER_REAL
will deliverSIGALRM
,signal.ITIMER_VIRTUAL
sendsSIGVTALRM
, andsignal.ITIMER_PROF
will deliverSIGPROF
.The old values are returned as a tuple: (delay, interval).
Attempting to pass an invalid interval timer will cause an
ItimerError
. Availability: Unix.
-
signal.
getitimer
(which)¶ Returns current value of a given interval timer specified by which. Availability: Unix.
-
signal.
set_wakeup_fd
(fd)¶ Set the wakeup fd to fd. When a signal is received, a
'\0'
byte is written to the fd. This can be used by a library to wakeup a poll or select call, allowing the signal to be fully processed.The old wakeup fd is returned. fd must be non-blocking. It is up to the library to remove any bytes before calling poll or select again.
When threads are enabled, this function can only be called from the main thread; attempting to call it from other threads will cause a
ValueError
exception to be raised.
-
signal.
siginterrupt
(signalnum, flag)¶ Change system call restart behaviour: if flag is
False
, system calls will be restarted when interrupted by signal signalnum, otherwise system calls will be interrupted. Returns nothing. Availability: Unix (see the man page siginterrupt(3) for further information).Note that installing a signal handler with
signal()
will reset the restart behaviour to interruptible by implicitly callingsiginterrupt()
with a true flag value for the given signal.
-
signal.
signal
(signalnum, handler)¶ Set the handler for signal signalnum to the function handler. handler can be a callable Python object taking two arguments (see below), or one of the special values
signal.SIG_IGN
orsignal.SIG_DFL
. The previous signal handler will be returned (see the description ofgetsignal()
above). (See the Unix man page signal(2).)When threads are enabled, this function can only be called from the main thread; attempting to call it from other threads will cause a
ValueError
exception to be raised.The handler is called with two arguments: the signal number and the current stack frame (
None
or a frame object; for a description of frame objects, see the description in the type hierarchy or see the attribute descriptions in theinspect
module).On Windows,
signal()
can only be called withSIGABRT
,SIGFPE
,SIGILL
,SIGINT
,SIGSEGV
, orSIGTERM
. AValueError
will be raised in any other case.
17.4.3. Example¶
Here is a minimal example program. It uses the alarm()
function to limit
the time spent waiting to open a file; this is useful if the file is for a
serial device that may not be turned on, which would normally cause the
os.open()
to hang indefinitely. The solution is to set a 5-second alarm
before opening the file; if the operation takes too long, the alarm signal will
be sent, and the handler raises an exception.
import signal, os
def handler(signum, frame):
print('Signal handler called with signal', signum)
raise IOError("Couldn't open device!")
# Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)
# This open() may hang indefinitely
fd = os.open('/dev/ttyS0', os.O_RDWR)
signal.alarm(0) # Disable the alarm