9.5. fractions
— Rational numbers¶
New in version 2.6.
The fractions
module provides support for rational number arithmetic.
A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.
-
class
fractions.
Fraction
(numerator=0, denominator=1)¶ -
class
fractions.
Fraction
(other_fraction) -
class
fractions.
Fraction
(string) The first version requires that numerator and denominator are instances of
numbers.Integral
and returns a newFraction
instance with valuenumerator/denominator
. If denominator is0
, it raises aZeroDivisionError
. The second version requires that other_fraction is an instance ofnumbers.Rational
and returns anFraction
instance with the same value. The last version of the constructor expects a string or unicode instance in one of two possible forms. The first form is:[sign] numerator ['/' denominator]
where the optional
sign
may be either ‘+’ or ‘-’ andnumerator
anddenominator
(if present) are strings of decimal digits. The second permitted form is that of a number containing a decimal point:[sign] integer '.' [fraction] | [sign] '.' fraction
where
integer
andfraction
are strings of digits. In either form the input string may also have leading and/or trailing whitespace. Here are some examples:>>> from fractions import Fraction >>> Fraction(16, -10) Fraction(-8, 5) >>> Fraction(123) Fraction(123, 1) >>> Fraction() Fraction(0, 1) >>> Fraction('3/7') Fraction(3, 7) [40794 refs] >>> Fraction(' -3/7 ') Fraction(-3, 7) >>> Fraction('1.414213 \t\n') Fraction(1414213, 1000000) >>> Fraction('-.125') Fraction(-1, 8)
The
Fraction
class inherits from the abstract base classnumbers.Rational
, and implements all of the methods and operations from that class.Fraction
instances are hashable, and should be treated as immutable. In addition,Fraction
has the following methods:-
from_float
(flt)¶ This class method constructs a
Fraction
representing the exact value of flt, which must be afloat
. Beware thatFraction.from_float(0.3)
is not the same value asFraction(3, 10)
-
from_decimal
(dec)¶ This class method constructs a
Fraction
representing the exact value of dec, which must be adecimal.Decimal
.
-
limit_denominator
(max_denominator=1000000)¶ Finds and returns the closest
Fraction
toself
that has denominator at most max_denominator. This method is useful for finding rational approximations to a given floating-point number:>>> from fractions import Fraction >>> Fraction('3.1415926535897932').limit_denominator(1000) Fraction(355, 113)
or for recovering a rational number that’s represented as a float:
>>> from math import pi, cos >>> Fraction.from_float(cos(pi/3)) Fraction(4503599627370497, 9007199254740992) >>> Fraction.from_float(cos(pi/3)).limit_denominator() Fraction(1, 2)
-
-
fractions.
gcd
(a, b)¶ Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the absolute value of
gcd(a, b)
is the largest integer that divides both a and b.gcd(a,b)
has the same sign as b if b is nonzero; otherwise it takes the sign of a.gcd(0, 0)
returns0
.
See also
- Module
numbers
- The abstract base classes making up the numeric tower.